Randić index and the diameter of a graph

نویسندگان

  • Zdenek Dvorak
  • Bernard Lidický
  • Riste Skrekovski
چکیده

The Randić index R(G) of a nontrivial connected graph G is defined as the sum of the weights (d(u)d(v))− 1 2 over all edges e = uv ofG. We prove that R(G) ≥ d(G)/2, where d(G) is the diameter of G. This immediately implies that R(G) ≥ r(G)/2, which is the closest result to the well-known Grafiti conjecture R(G) ≥ r(G) − 1 of Fajtlowicz [4], where r(G) is the radius of G. Asymptotically, our result approaches the bound R(G) d(G) ≥ n−3+2 √ 2 2n−2 conjectured by Aouchiche, Hansen and Zheng [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Higher Randić Index

Let G be a simple graph with vertex set V(G) {v1,v2 ,...vn} . For every vertex i v , ( ) i  v represents the degree of vertex i v . The h-th order of Randić index, h R is defined as the sum of terms 1 2 1 1 ( ), ( )... ( ) i i ih  v  v  v  over all paths of length h contained (as sub graphs) in G . In this paper , some bounds for higher Randić index and a method for computing the higher R...

متن کامل

On the harmonic index and harmonic polynomial of Caterpillars with diameter four

The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...

متن کامل

A proof for a conjecture on the Randić index of graphs with diameter

The Randić index R(G) of a graph G is defined by R(G) = ∑ uv 1 √ d(u)d(v) , where d(u) is the degree of a vertex u in G and the summation extends over all edges uv of G. Aouchiche et al. proposed a conjecture on the relationship between the Randić index and the diameter: for any connected graph on n ≥ 3 vertices with the Randić index R(G) and the diameter D(G), R(G) − D(G) ≥ √ 2 − n+1 2 and R(G...

متن کامل

Quantitative Correlation of Randić Indices and Adjacency Matrixes With Dewar Resonance Energy of Annulene Compounds

Topological indices are the numerical value associated with chemical constitution purporting for correlation ofchemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is adelightful playground for the exploration of proof techniques in Discrete Mathematics and its results haveapplications in many areas of sciences. One of the useful indices ...

متن کامل

ar X iv : 0 90 6 . 52 30 v 1 [ m at h . C O ] 2 9 Ju n 20 09 Randić index , diameter and the average distance ∗

The Randić index of a graph G, denoted by R(G), is defined as the sum of 1/ √ d(u)d(v) over all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we partially solve two conjectures on the Randić index R(G) with relations to the diameter D(G) and the average distance μ(G) of a graph G. We prove that for any connected graph G of order n with minimum degree δ(G), if δ...

متن کامل

On the Randić index and Diameter of Chemical Graphs

Using the AutoGraphiX 2 system, Aouchiche, Hansen and Zheng [2] proposed a conjecture that the difference and the ratio of the Randić index and the diameter of a graph are minimum for paths. We prove this conjecture for chemical graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011